BEHAVIOR OF A RIGIDLY PLASTIC CYLINDRICAL
SHELL EXPOSED TO INTERNAL PRESSURE

V. A, Odintsov and V, V, Selivanov UDC 539,374 .1

A law for conservation of energy is used in solving a system of equations describing the one-
dimensional motion of an ideally plastic incompressible shell exposed to an expanding poly-
tropic gas in equilibrium, Analytic expressions are obtained for determining the stress and
velocity fields in the shell as a function of the displacement of the internal shell boundary,

The behavior of an ideally plastic incompressible shell exposed to pressure somewhat exceeding the
yield stress of the material was considered in [1-8]. The motion problem for an ideally plastic shell ex~
posed to expanding detonation products in equilibrium lacks an analytic solution in the form of finite de-
pendences on coordinate and time. However, it can be solved if we take the magnitude of the external (b)
of internal (a) radius of the shell as the independent variable.

Let us consider in the figure a plane deformation of a cylindrical shell exposed to detonation products
obeying the expansion law

pVE=const, @

where p and V are the pressure and specific volume, respectively, of the detonation products. The stresses
0ps Ug, 2nd 0, are principal. The internal and external initial shell radii are denoted by a, and by, respec-
tively, and the current radii, by a and b,

We write the law of conservation of energy of the system in the form

E+ W+ Ef=E,

or per unit of length
E+ W+ E¢=t, @)

where E; and E are the initial and current internal energies of the detonation products, respectively, W is
the shell kinetic energy, and E; is the work of plastic deformation per unit of length, The kinetic energy
of the detonation can be neglected. We will consider in detail each term in Eq. (2).

1. Equation (1) implies that

p=Dolac/a)*, 3)

where p, = poDZ/S is the instantaneous detonation pressure, p, is the density of the explosive, and D is the
rate of detonation.

The internal energy for an ideal gas is given by

E=pV/(s — 1),
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z where V is the volume of the detonation products per unit of length, or using Eq.
(3) and taking into account that
V=na?,
& we obtain
. b,

: L et

s (k— 1) aZ(k—i) :
Since

\ By = npyal|(k — 1),

we have

Fig. 1. ~
E=E/Ey=(ay/a)**—1, 4)

2. The equation for the shell kinetic energy will be written in the form

W= j @*/2) dm,

where dm = 2 7y,rdr; v is the radial velocity of shell particles, and v, is the density of the shell material,

Assuming the shell material to be incompressible, we determine the integral of the continuity equa-
tion, '

v=aalr, (5)

where r is a Euler coordinate and ¢ = da/dt is the speed of the interior surface of the shell.
Because of Eq. (5) we have
W=ny,a2a?ln(b/a ;
Yo . (b/a) (6)
W=WIE,=(k — 1yy,a*(a/ay)?In{b/a)/p,.

We denote by (v) the mean shell velocity, determined from the law of conservation of momentum,

XM = S. vdm.

m
. where M is shell mass per unit of length, The equation for relative kinetic energy takes the form
W=(k — 13, (bofa? — 1K02p, @
3. We write the equation for the work of plastic deformation in the form

£

E = f ApdU;, A,= Y oide;,
i b

where oy and g; are stress and deformation intensities, respectively, and U is shell volume per unit of
length.

Taking the plasticity condition in the form

0;=V 3 %Y/2, (8)

where Y is the dynamic yield stress (M—2/\/é_for the Mises— Henke plasticity condition and # = 1 for the
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Saint Venant— Tresk plasticity condition), and neglecting elastic deformations., We have

b
E; = V3xYn 5 e;rdr. (9)

We find the tangential logarithmic deformation
g = —ln({ —u/r)= —In [t — (a—a})/r?] "%,
where u is the radial displacement, When gg = ~ &, it follows that

. 2
8{"—@1]}(1——‘1—————'“0).

= 3 vz

Substituting £; in Eq. (9) and integrating, we obtain

E .= anY [a®ln(db/a) + b3 1n (b/bo)'—a% In (b/ay)];
f (10)
E ¢=(k — 1)xY Alp,,

where A = (a/ag)?In(b &) + (by/a,)?ln(b/by)—1In(b/ey). Substituting Egs. (4), (6), and (10) in Eq. (2), we obtain

s [ 41— (ay/a)* D — (k— 1yxy Alp ]1/2 11
“‘[”*’ G- T @e mem (1)

The initial conditions are given by 2(0) = ¢, and a(0) = 0. Equation (11) together with Eq. (5) and the incom-
pressibility condition b2 ~g%= bg —a% allows us to determine the mass velocity in any radial shell section as
a function of the position of its internal boundary a.

To determine the stress state, we will use the Euler equation

ar r

v AN 99, O — 6, {12)
'\’0(5{‘!‘ U“g,“) .

Substituting Eq. (5) and the derivatives 8v/3t and 8v/8r in Eq, (12) and also using the plasticity condition
of Eq. (8), we obtain

LSS R N 3 3)
r .

or r r3

where & = d% /dt? is the acceleration of the interior surface of the shell. Integrating Eq. (13) over r be~
tween a and the current value of r and taking into account the boundary condition on the internal surface,
or =—p at r = a, we obtain the equation

0 = — p+ %Y Inl 4y, (ai + a7) ln_;_ﬂo(g_z;;_a;), (14)

which, when using the condition on the external boundary 0,=0atr =h, takes the form

b . . 242 "
—p+nY1n7+yo(aa+ a2> ln-g——{—yo(%—%z)=0. (15)

Using Egs. (11) and (15), we find in Eq. (4) the acceleration of the internal surface,

a = e (ay/a)?* 2&%Y 1— (ao/‘l)Z(k——1> — U~ i) ”YAIIPO- [—L =+ : 1 ]
a ! :

ayeln (blz) V 3ay, ° (k — 1) v, (a/a)? In (b/a) 22 In(bja)  Zaln (b/a) {186)

Substituting Eqs. (11) and (16) in Eq. (14), we obtain
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_ - {ag/0)?® 1n (r/b) 1 — (ag/a)2F—1) — (k — 1) uT A/p 22 In (r/a) | a? (17)
9r= por ) 1n (b/a) + Dy E(k_i) (alay)® 1 (b/a) : [(T) —1— o (5/a) ('bi‘—i)]

Thus, if we know the distribution of the radial stress component across the shell, we may determine
the two other components oy and o, of the stress tensor, if we use the plasticity condition of Eq. (8) and the
"plane deformation condition g, = 0 (g is the axial deformation component).

We will use Egs. (2), (4), (7), and (10) to determine the mean shell veloeity (v). 'Carrying out the
transformations, we obtain

oo 14— (ag/a)2 ") — (k — 1) xY A/p,
D% =2p, (k—=1) 7, [(Bo/ag)? — 1] . (18)

Since p, = p,D?/8 and setting k = 3, we have

@ B ay \b YA
p = [1- (2] |- wmi=r,

where g = ooa%/[yo(b(z) - a(z))] is the ratio of explosive mass to shell mass,

The second term takes into account energy losses due to plastic deformation, We write this term in
the form

b 2x¥ [ a? In (b/a) + b3 In (8/b) — af 1n (b/ay) (19)
P YoD? (bg——a%) :

Let us assume that the stress distribution is invariant throughout the shell thickness in the course
of its expansion, This formally means that we must set¢ =b anda, = b, in Eq. (19). Then Eq. (19) be-
comes an equality,

Y a
vp = G070 g
and Eq. (18) takes the form
(v g @, \4 2xY a (20)
i o el Nk

D a a,

If we take the Tresk condition as the plasticity condition, Eq. (20) becomes

F B 4, \ 4 2y a
R

which was given in [6].

Calculations carried out using Egs, (11), (16), and (17) and a numerical method [8] demonstrated that
the results coincide to within a numerical approximation.
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